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at which control information is made available will be more cru-
cial than the time taken to build and update the environmental
model. For these reasons it would seem natural to build a
dynamic vision system for autonomous navigation with two
loosely connected components with very different temporal rates
that reflect their required behaviours. This approach follows
roughly the ideas of a subsumption architecture [3].

Here we shall consider the dynamic stereo tracking problem
associated with following a path through a scene based upon a
subset of features chosen to act as beacons. The adopted strategy
is a simple one (see figure 1). After a start up phase which
involves full stereo processing of the scene, the recovery of 3
dimensional geometrical primitives and some
topological/statistical completion, a small number of beacons are
chosen. The processing of subsequent frames is performed in the
context of the existing description of the beacons (taking into
account any available trajectory information) via a cycle of
back-projection feature tracking and geometrical consistency to
give an updated estimate of their 3 dimensional location (and
conversely the estimate of the robot's position with respect to
them).

In current implementations of the system, scene descriptions are
limited to straight line geometrical primitives and hence the
application domain is limited to well carpentered worlds. It is of
course our intention to extend the primitive base to allow a wider
area of application. We are fortunate in this regard in that the
stereo matching algorithm we employ [4] works at the level of
the edgel (rather than polygonal approximation) and is reason-
ably generic in this regard.

Figure 1

This paper describes the preliminary stages in the development
of a predictive feed-forward (PFF) stereo based tracking module.
The object of the module is to exploit the spatio-temporal coher-
ence that exists in a sequence of stereo images in the context of
providing a visual control mechanism for a mobile vehicle with
uncertainty in position. PFF provides a method by which the
representation of a 3D scene can be maintained and evolved
over time. Furthermore, quickening strategies can utilise the
spatio-temporal coherence by exploiting previously obtained
depth values and approximate trajectory information in order to
accelerate the process that actually achieves the stereo
correspondences.

Much research in computer vision has been developed in
snapshot mode, concentrating attention on a single image or a
small number of frames obtained either in synchrony or from a
short movie sequence, the computational overheads involved in
the analysis of a long sequence of images having proved prohibi-
tive. It has been assumed, albeit implicitly, that algorithms
developed in this way would, given appropriate parallel computer
architectures, eventually be able to perform in real time on con-
tinuous image sequences. That is, the whole process involved in
the recovery of scene descriptions would begin afresh upon each
image frame and that some [not fully defined] extra module
would be responsible for maintaining an evolving model of the
environment based upon these descriptions.

In the context of the control of a mobile robotic vehicle it is
important to distinguish between the twin goals of obtaining an
accurate model of the environment and determining the current
position within it. Hence dynamic vision can be decomposed into
[at least] two important modules:

1) The maintenance of an accurate and, as far as possible,
topologically complete scene model. This will include: the
combination of multiple views [1,2] to give more com-
plete and robust data; the identification of and inclusion of
novel (not previously seen) features; the determination of
free space within which the robot can move.

2) The use of visual tracking to provide the control signal
required to navigate an autonomous vehicle through an
unstructured/partially structured environment using as bea-
cons a subset of the scene features (perhaps identified out-
side the tracking module itself).

The visual through-put and temporal response required by each
task is very different. For example, when using visual feed back
as a control mechanism it will be necessary to provide a much
higher sample rate than that at which the model of the environ-
ment needs to be updated. Furthermore, the actual elapsed time
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PATH FOLLOWING

Consider the abstract design of a vehicle control system (VCS)
which is able to steer along the path P based upon the availabil-
ity of positional information (for example the PID controller dis-
cussed in the experimental section below). Assume also that the
controller is able to provide its own estimate of position (either
direct odometry from motor feedback or upon the basis of an
internal model) in the absence of an external source. This system
can be represented as the following function

TM = vcscr* P, t, t+i)

That is the expected location at time H-l is determined from the
location T, and the path P. Similarly the position at a future time
t" is given by

Tf = VCSff,, P, t, O

Suppose we have an updated estimate of the of our position at
time f from visual feedback, call it T"f then the most obvious
form of visual feedback is to substitute T'< for Tf in the vehicle
controller. However it is necessary to make allowance for the
time delay required to process the visual data. If say the visual
feedback for image frames captured at time f7 is not available
until r" then the best estimate for position at time f", and the one
substituted into the controller, will in fact be

7> = - Tf)

that is the the best estimate of the current location is given by
the last known position for which a visual estimate exists plus a
component since that time based upon vehicle control.

Current research is aimed at developing more sophisticated stra-
tegies for estimating position, employing forms of the Kalman
filter to optimally combine estimates from the delayed visual data
with current vehicle control information.

PFF: PREDICTIVE FEED-FORWARD STEREO

One can imagine a number of quickening strategies to utilise the
spatio-temporal coherence that exists in a sequence of stereo
images in order to accelerate the process that actually achieves
the stereo correspondences. The most obvious approach is to
assume that the local change in disparity that occurs between two
closely spaced frames in a stereo sequence will be of limited
magnitude. This would allow the search for stereo correspon-
dence to be restricted to a small disparity window determined
from the range of disparities found in the immediate neighbour-
hood of the frame considered previously.

More sophisticated control strategies can also be considered.
Estimates of the current trajectory of the robot and/or the objects
in the [segmented] scene can be exploited in order to give a first
estimate (one which assumes partial rigidity) of the locations of
features that are expected to arise in subsequent views. Such
hypotheses could be confirmed/modified through a process of
back projection. Given sufficient subtlety the process of scene
prediction would allow novel features to be identified rapidly and
attended to. Furthermore a small number of focus features, once
their initial predictions have been verified, could be used to give
more accurate estimates of the best partial scene transformations
and further reduce the cost of matching (particularly when trajec-
tory estimates are poor or not given).

Figure 2 is a block diagram representing the PFF stereo mechan-
ism used here. The cycle is as follows:

(i) Predict location of line features to be used as beacons
(given by their last known position plus an estimate of tra-

jectory) and, through a process of back projection, their
left and right hand image descriptions.

(ii) Identify the most likely candidate for each line in the left
and right image using the line tracker module.

(iii) Recombine tracked left and right image features to give
updated geometrical description of line in 3D.

(iv) Assume rigid transformation of scene (robot only moving)
and find optimal transformation taking predicted geometry
into updated geometry.

(v) Update actual geometrical description of beacons and
refine estimate of location with respect to them.

It is possible that at stage (ii) one or other image primitive
resulting from the back projection is either not tracked or tracked
incorrectly resulting in missing or incorrect 3D data at stage (iii).
However as an estimate of the transformation is available at
stage (v) it is possible to update the geometry of all beacons,
including the spurious ones, and hence little fallout of data is
experienced by the process. This provides an advantage over
strategies that allow independent 2D/3D tracking of individual
2D/3D primitives.

Predict Position

Project Geometry
2D

7 \
Track Lines

LEFT

\

\

Track. Lines

RIGHT

/

Project Lines

3D

Exploit Rigidity

Optimise Transform

"T
Update Geometry

Refine Position

Figure 2

2D Feature Verification/Tracking

The consistent line closest to a predicted line can be obtained
using a rapid verification cycle. Consistency is defined in terms
of orientation and, if required, the contrast of the line. Contrast
being viewpoint specific can only be exploited as a consistency
measure if the predicted viewpoint is similar to the viewpoint at
which the contrast of the line was last measured and provided a
catastrophe of viewpoint has not been encountered. Furthermore
it is important that the contrast of a line is specified in a
viewpoint independent fashion.

The 2D tracking procedure is currently performed as follows:

1) N equally spaced points along the predicted line are
chosen.

2) For each such point the closest consistent candidate edge
point in direction orthogonal to the predicted line is
located.
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3) The set of edge points is searched heuristically for the
maximum set that are consistent with a single straight line
that is compatible with the orientation constraint.

4) Orthogonal regression is used to fit a straight line to the
selected edge points (if more than three such points exist).

5) The chosen line is extended along its length by incremen-
tal prediction and verification.

The N points along each line are chosen to be at least a pixel
apart along the line. If N is made constant for all lines (over a
threshold length) it is possible to search for each line in a time
independent of its length.

Candidate edge points are located using an algorithm that is
essentially an incremental one dimensional version of the Canny
edge detector [5]. First the image intensity orthogonal to the
edge is arranged as a one dimensional image array. These image
intensities could be located in the true orthogonal direction
employing forms of intensity interpolation. However, we find it
sufficient simply to quantise the orthogonal direction as either
horizontal, vertical or one of the diagonals. As a result we may
be searching for an edge in a direction that is up to 22.5 degrees
from the true orthogonal direction and hence may expect the
measure of contrast of the edge to be affected accordingly.

Predicted line location showing approximate orthogonal directions
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Figure 3.

The search for the closest candidate edge begins at its predicted
location (call it P). Then the following algorithm is performed to
find the closest consistent edge point (see also figure 3):

i) In an iterative fashion pixels to either side of the predicted
location that lie at incrementally increasingly disparate
locations are considered (in the order P-i then P+i; where i
is the current increment).

ii) Gaussian profile convolution is performed over the (ID)
neighbourhood of the pixel and stored as GAUSS[P-i] and
GAUSS[P+i] for pixels P-i and P+i.

iii) Gradient values are computed for pixels P-i+1 and P+i-1
according to the differences GAUSS[P-i+2]-GAUSS[P-i]
and GAUSS[P+i]-GAUSS[P+i-2] respectively and stored

iv)

as GRAD[P-i+l] and GRAD[P+i-l].

Processing continues until either a limit is reached and no
edge is returned or the first suitable maxima in the gra-
dient value is located. The latter is the case if a gradient
value has the appropriate sign and approximate magnitude
and the condition

IGRAD[max-l]klGRAD[max]l and
IGRAD[max+l]k=IGRAD[max]l

holds (where max is either P-i+2 or P+i-2).

v) If an appropriate maximum is found, its location is given
to a sub-pixel value by approximating it to the maximum
in the quadratic fit through the gradient values of this
pixel and its immediate neighbours.

The search for the set of points that is consistent with the best
straight line has the following form (illustrated in figure 4).
Approximations to the line are considered in turn by choosing
ordered triplets of candidate edge points. The line is approxi-
mated by the difference in the first and third edge locations.
Only if the mid point of the triple is compatible with the line
description (within a predefined small threshold) and the line
itself is consistent with any orientation constraint, is the
hypothesis considered further. Each approximation is ranked on
the basis of the number of other candidate edge points that could
lie upon it (within the threshold). The first hypothesis that is
found to be above acceptance threshold (or the best if non are
above threshold) forms the basis of the best consistent set. In the
event that no hypothesis includes more than 3 edge points then
an exhaustive search commences. Each pair of edge points are
considered in turn until one provides a suitably good basis for
acceptance.

Best hypothesi!

(a)

ft)

«0

Figure 4. In (a), the three edge points a, b and c form the basis
of the best candidate approximation to a line. Edge points e, f
and g are also consistent with the extension of the line ac. Fig-
ure (b) shows the results of orthogonal regression to these
points. In (c) the final extension of this line is shown.
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It would be possible of course to include within a similar search-
ing strategy the possibility of ambiguity at each edge location.
The current approach of finding only the candidate edge location
closest to the predicted location could be replaced, at the expense
of computational complexity, with one that recovers all suitable
edge hypothesis in the neighbourhood. In such a scheme the
selection of actual edge locations consistent with a single line
interpretation (again at increased computational complexity)
would be postponed. However we have found the former strategy
sufficient for our purposes.

Once a consistent set of edge points has been identified it is
repeatedly fit using orthogonal regression [6,7] and extended to
include new edge points that are compatible with it. Extension is
first performed over the set of candidate edges not already
included in the best consistent set. Further extension is possible
beyond the extremities of the current line approximation by
recourse to controlled use of the local edge location algorithm
discussed above.

Exploiting Rigidity

Given a set of hypothetical matches between predicted beacon
descriptions (in 3D) and their tracked counterparts it is possible
to exploit the rigidity assumption in order to obtain a correction
for the current estimate of the position of the stereo system, and
also determine those pairings which are correct. Rigidity is an
assumption that is often used in model matching to determine a
consistent set of matches between features of a known object
model and features recovered from the scene. The assumption is
valid here only if the objects that compose the scene are station-
ary or that all the beacons arise from a single rigid object. It is
possible, however, to imagine developments of such a system
that will allow the scene to be segmented at run time on the
basis of consistent clusters in transformation space.

The strategy we have adopted is based upon [8] and is as fol-
lows. Suppose we have obtained an initial estimate of the correct
transformation then it is possible to examine the set of potential
matches (predicted to hypothesised) to identify just those that are
consistent with it. Only if, after transformation, two lines could
occupy the same region of space within the error bounds are they
considered to be consistent. The best new transformation, in the
least squares sense, consistent with the set of candidate line pair-
ings can now be computed. The process of estimation and con-
sistency checking continues until the set of consistent matches is
not added to (note that consistent matches are never deleted from
this set to prevent oscillatory behaviour). If this transformation is
considered good enough, that is it includes a minimum of 4
matches or half the number of candidate matches if that is
greater, it is accepted.

The first estimate to the transformation is obtained from the
whole set of potential matchings. If this approach does not result
in an acceptable transformation it is necessary to search the set
of potential transformations until a suitable candidate transforma-
tion results. Fortunately, because of the small set of beacons that
are used, coupled to the fact that they are restricted to a single
match and the tracking process is robust, the combinatorics of
this search do not prove too costly. Each pair of possible
matches is allowed to hypothesise a potential transfonnation.
These are investigated in turn using matches for the longest
primitives first (these should be most robustly matched).

Optimal Position Updating

The result of the stereo location of a straight edge XQ (ignoring
endpoint information) is the position p0 of a point on the line
and its unit direction vector v0. If we extend v0 to a basis by
choosing fcvl, v2, then any nearby line A, can be described by
position p and direction v where

P = Po + PiVi + p2v2

V = Vo + + V2V2

The map

X -» x = (pi, p2, VL V2)'

is then a C°° local coordinate chart on the line manifold near X$.
To describe the errors of measurement we give the probability
distribution of the perturbation 4-vector x between the measured
line Xo and its true position X. On the assumption of approxi-
mate normality this is adequately described by the expected error

E[x]=x

and the 4x4 measurement covariance matrix S

S = E[ ( x - x ) ( x - x ) ' ] = E [ x x ' ] - x \

We assume that our stereo measurement process is unbiased so
that x = 0. Methods for estimating the covariance S are outlined
in [9, 2].

Suppose the camera frame changes between two stereo views by
an estimated rotation Ro and translation to. Coordinates p in the
old frame are related to p ' in the new by

p = Rop' + t0

Rigid transformations (/?, t) close to (̂ ?o. to) can be approximated
by composing this with a second small rigid motion with angular
vector © and translation vector x

p + COXp + X

beErrors in the transformation between two frames can
described by the covariance of the correction 6-vector (co, x).

Suppose a line has estimated location and error covariance
(Po. vo< S) m the old frame and is matched with (p0', v0', 5") in
the new frame, the estimated rotation and translation and error
covariance between frames being (/?o, t0, S"). The required
correction vectors described above for the two lines and the
motion can be amalgamated into a 14 = 4+4+6 dimensional state
vector X with covariance matrix

s
0
0

0
S'
0

0
0

5"

The condition that the corrected lines are the same in the true
frame is

v - v" + CBXV" + x = 0

(p - p " + ©xp" + x) - (p - p " + eoxp" + x)v v = 0

If the four independent components of these two equations are
projected out by taking scalar products with V! and v2 and the
results are linearised in the small corrections, we obtain four
scalar constraints on the fourteen components of X of the form

z + h( X = 0

Our initial estimate of X is Xo = 0 with covariance So. The
optimal correction to impose a constraint as above is
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— So —
(Soh) (Sph)'

h ' S o h

k =
h ' S o h

Xj = Xo - k (z + h' Xo)

(note that the correction is described by an 'innovation' term
proportional to the error of the old estimate, this is typical of a
Kalman filter). The increase in residual is

(z + h' X0)2

h' So h

The four constraints can be applied sequentially to obtain simul-
taneously the optimal corrections to the position in the old frame,
the position in the new, and the transformation between frames.

If we want to test the plausibility of a match given the a priori
information the maximum likelihood test treats the total increase
in residual e as a x2 on four degrees of freedom.

The new covariance matrix gives estimates of the error in the
three corrections in blocks down the diagonal, and the correla-
tions between corrections are stored off the diagonal. In some
applications all this information will be retained, but here we
either want to improve our motion estimate or our estimate of
the old line position, and we can drop the additional components
of the state vector and its covariance.

This constraint application procedure forms the basic unit of a
two pass procedure for improving the motion estimate and updat-
ing the beacon model. The initial motion estimate is assumed to
have near infinite covariance. The state vectors for the first two
beacons are appended and the constraints imposed. This is
repeated for the whole list of matched beacons, only the motion
estimate and its covariance being updated.

A second pass is made down the list with the new motion esti-
mate, updating only the position of the beacons in the old frame.
This two pass procedure is sub-optimal, but the optimal pro-
cedure involves amalgamating all the beacon corrections into a
single long state vector and is computationally unattractive for
this application.

slightly asymmetric convergent gaze of approximately 15 degrees
fixating a workspace some 35cm distant. The light-weight Sony
TV lenses have effective focal lengths of approximately 17.5mm
and subtend a visual angle of about 30 degrees. Recovery of the
approximate relationship between the coordinate system used by
the robot hand and that used by the stereo system is achieved by
making a number of known movements of gripper and noting the
resultant transformation of the stereo rig with respect to a fixed
calibration tile.

Vehicle Simulation and Control

The low level robot control system employed to simulate the
vehicle is designed to embody some of the features that would
present problems for the control of a real vehicle. The motion
achieved by the simulated vehicle is quasi continuous with a path
constrained to be roughly parallel to the ground plane. The vehi-
cle has state parameters of heading, curvature and speed. Only
curvature and speed can be set externally; heading is the result of
previous state and is initialised straight ahead. In this way the
vehicle roughly simulates a steerable device. The vehicle simula-
tor runs at 5Hz (the limiting response time of the robot).

The vehicle control system is of PID design with an update fre-
quency of 2Hz. Consider the 2D plane which includes the path
P, within it the position vector x describes the location of the
vehicle, 9 the heading angle and v the velocity. Assuming that x
does not lie on, or 0 along, the path then it is necessary to
update the state parameters to set a course to rejoin the path
some distance ahead. A PID controller with critical damping and
bandwidth X (characteristic length L = v/X; the distance to rejoin
the path) is given by

3 3 1curvature = -—q -—p - —

where p is the perpendicular distance from x to P and q is the
difference between heading angle and the tangent to the path.

Figure 5.

EXPERIMENTAL RESULTS

Currently we do not have access to a mobile vehicle suitable to
test our algorithms or the computing power to implement them in
real time. As an alternative we have developed a simple test bed
for experimentation which utilises a robot arm to provide an eye
in hand stereo rig to simulate a very slow moving vehicle. Fig-
ure 5 shows the experimental set up. An UMI robot (of educa-
tional rather than industrial specifications) holds a miniature vir-
tual vehicle consisting of a pair of Panasonic WV-CD50 CCD
cameras mounted on a fixed stereo rig. The cameras are posi-
tioned with optical centers approximately 9cm apart and with a

Performance Examples

The ability of PFF stereo to overcome positional error is illus-
trated in Figure 6. In part (a) line features for the previously
acquired 3D geometry are displayed (dashed) over a new image.
Updated line features that result from the correction of position
achieved by the PFF process are shown as solid lines. In (b) a
subset of 3D line features selected as beacons for rapid visual
servo are shown. For clarity, they are not shown over the origi-
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nal image. Running on a Sun 3/60, the total elapsed time take to
process a frame and track the beacons was less than 10 seconds
(excluding the time to acquire the images) compared to over 90
seconds for full frame stereo.

Figure 7 illustrates the path following scenario. In (a) the path is
shown in the 3d world coordinates of the vision system (the
reconstructed scene description is also shown rendered for com-
pleted surfaces). The path is approximately 15cm long, it lies in
the ground plane and begins at the projection of the original
position of the vision system's origin onto that plane. Figure (b)
is a view of the 3D line data, recovered from full stereo process-
ing, from above.

Figure (c) shows the motion of the vehicle according to its own
internal model as it attempts to navigate the path using the PID
controller. This path is also show in (d) viewed from above and
enlarged. Additionally the path of the vehicle according to the
visual feedback (obtained at approximately 0.05Hz) is also
shown (projected into the ground plane as visual feedback actu-
ally gives data with six degrees of freedom). This path, whilst
not smooth, shows that stereo based geometrical information is
(for this test object at least) able to provide positional informa-
tion that is of good quality, and additionally, the extent to which
the vehicle's path is in error.

Figures (e) and (0 illustrate the inclusion of visual information
into the vehicle control loop. Notice that the vehicle controller's
internal model now includes a number of discontinuities at points
where visual data is incorporated (of course the actual motion of
the vehicle is continuous). The visual feed back is sufficient to
enable the vehicle to maintain a course that does not deviate
from the required path.

Future Developments.

Future developments are many fold. Problems which are being
addressed currently include.

(1) The changing description of the world as a vehicle passes
through it has many consequences. As a result of light-
ing, attitude and image blur the descriptions of primitives
will slowly evolve; and this should be modeled.

(2) Errors in the calibration of the stereo system will be
noticeable over long range motions, to the effect that as
an object is approached it will appear to distort. This may
also result in apparently safe paths becoming dangerous.
Accordingly it may be necessary to account for and
correct calibration errors.

(3) Tracking is only possible using the simple mechanisms
above if (a) the errors from stereo are small in comparison
to the time steps, (b) within the tolerance of the system,
and (c) the system is robust. These conditions cannot be
guaranteed to hold. Accordingly it will be necessary to
incorporate more sophisticated tracking and position
update mechanisms based upon a Kalman filter.

A transputer based multiprocessor system is currently under
development. The system will utilise dual-ported video memory
to distribute multiple regions of interest into the processing array
at frame rate. It is expected that full scene descriptions will be
recovered in a small number of seconds with focussed feature
tracking at near frame rate.
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