
Model Based Tissue Differentiation
in MR Brain Images

Peter H. Mowforth and Jin Zhengping

The Turing Institute,
36 North Hanover Street,

Glasgow Gl 2AD.

This paper describes a technique which establishes the
correspondence between a magnetic resonance (MR) im-
age of the brain and a model anatomical image. Fol-
lowing correspondence, it is demonstrated that segmen-
tation of tissue types may be achieved along with the
provision of medically relevant indexes for diagnosis.

The work reported in this paper is part of a project
whose objective is the automated, model-based interpre-
tation of medical images. A suggested overall structure
of this system, see Fig. 1, involves descriptions at multi-
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Figure 1: Suggested overall framework for project.

pie levels of abstraction. In order to interpret the med-
ical images it is necessary to match them to anatomical
models. Although this may be possible over a range
of abstractions, the work reported here attempts corre-
spondence only at the image level. Whilst the use of
learning, symbolic reasoning and inference may be nec-
essary for a complete system, this work explores how
much can be achieved without such abstraction.

A MR machine has the ability to introduce contrast
between tissue types on the basis of its imaging parame-
ters. Given that the appearance of the resulting image is
determined by the machine settings we require an imag-
ing model for the machine. Such a model can be in the

Imaging
model

Model
anatomical

image

MR image
from

patient

Instatiated
model
image

Discrepency
maps

Figure 2: Summary of the matching process which com-
bines together a model anatomical image, an image from
a patient using a MR scanner and the imaging model
specific to that scanner.

form of a look-up table providing contrast values for dif-
ferent machine settings and, if necessary, some estimate
of their variation.

The first level of the anatomical model consists of im-
age slices of a model brain for which the different tissues
are represented by arbitrarily chosen gray values. These
gray-valued variables may then be instantiated via the
imaging model so as to produce an instantiated model
image. The instantiated model image thus represents
what we might expect a 'perfect' brain to look like un-
der a certain set of machine protocols.

The final requirement is to match together the instan-
tiated model image with the image derived from the pa-
tient. The discrepancies between the two may be repre-
sented via discrepancy maps. Fig. 2 shows a summary
of this process.

Similar work using CT images of the brain has been
described in [1]. Work which explored the usage of MRI
to facilitate medical diagnosis and research has been re-
ported in [9] where brain tissue MR images were classi-
fied by utilizing information such as gray levels and areas
supplied by a head model. In [7] a general segmentation
and recognition system has been 'instantiated' by en-
coding a domain-dependent subsystem of knowledge ob-
tained through books and by interviewing experts to rec-
ognize MR brain images and PET brain images. Other
relevant work has been reported in [10] where multispec-
tral MRI and display techniques were used to obtain
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Figure 3: Anatomical model building.

higher contrast between tissue types of interest and back-
ground; in [8] where multispectral MRI has been used
to provide a 'high information content' display which
will aid in the diagnosis and analysis of the atheroscle-
rotic disease process, and supervision of therapies; in [6]
where MRI data have been used to reconstruct a 3D
heart model which describes the shape of each part of
the heart in a voxel space.

ANATOMICAL MODEL

The model anatomical image used in this paper is taken
from the Atlas of Sectional Human Anatomy by J.G.
Koritke and H. Sick [5]. The image in the atlas which
corresponded to that captured from the patient was first
digitised. A linear geometric transform was applied so
as to compensate for the distortion introduced in the
digitising process; i.e. the image was aligned vertically
and centered.

The images were then hand-painted with arbitrar-
ily chosen gray levels to symbolically differentiate be-
tween: background, scalp/bone, cerebro-spinal fluid
(CSF), gray matter and white matter. These were cho-
sen because they represent the tissue types primarily dis-
tinguished under MR protocols - see Fig. 3.

The anatomical model described is clearly the simplest
that is of practical value. Work is already in progress to
extend the model in two ways. First, multiple descrip-
tions are necessary in order to code information such as
anatomical regions (e.g. lobes) or anatomical structures
(e.g. pons). Second, the model needs extending into a
volumetric 3D form.

TR
a

2000
2000
1080
1080

TE
100
20
100
20

GM
115
99
107
89

WM
84
111
79
104

CSF
171
79
132
59

B/S
18
49
19
47

Air
3
1
3
2

"Unit of TR and Tg is ms.

Table 1: An imaging model.

IMAGING MODEL

The basic diagnostic indexes of MRI are the longitudi-
nal (Ti) and transverse (T2) proton (1H) nuclear mag-
netic resonance (NMR) relaxation times of pathological
human and animal tissues [2]. Whilst T\ and T2 are
machine independent, MR machines typically only allow
the user to specify two main control parameters. These
are TR and TE- These are machine dependent and have
a relation with Ti and Ti for a given tissue under some
given condition. There -is a further relation between Tj
and T2 and the resulting gray values in the images pro-
duced by the machine. These gray values are machine
dependent. An ideal imaging model should establish re-
lations among T\ and T-j, TR and TE, image gray levels,
and other conditions such as temperature, species, and
in vivo versus in vitro status.

To simplify the problem, this paper describes only
the relationship between TR and TE and the tissue-
dependent image gray levels.

The MR image derived from the patient uses a given
pair of TR and TE values. The corresponding anatomi-
cal model image is instantiated by mapping each of its
tissues to a particular gray level according to that rela-
tion. The machine dependent, instantiated model may
now be used directly for matching.

Table 1 is an imaging model specific to a particular
MR machine. To generate the imaging model we took 8
MR images of a human brain, using the same TR and TE
values. The slices were 10mm thick and were separated
by 10mm increments. Fig. 4 shows examples from one
slice under four different control settings.

For each TR and TE and tissue type (including back-
ground), a sample of gray values were taken from that
tissue type over all images at that TR and TE- The me-
dian values of each sample set were calculated and used
to construct the imaging model shown in table 1.

INSTANTIATION OF
ANATOMICAL MODEL

THE

We may now instantiate the anatomical model with a
range of TR and TE settings. For example, from the
imaging model of Table 1, we obtain GM=115, WM=84,
CSF=171, BONE/SCALP=18, AIR=3 through the in-
dex TR - 2000ms, TE = 100ms. These values were
assigned to the corresponding tissues of the anatomical
model image to instantiate it as seen in Fig. 5.
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Figure 4: MR images used in building the imaging model.
8 slices for each set O/TR and TE-

MATCHING

A MR image was taken from a patient using TR =
2000ms and TE = 100ms for approximately the same
brain slice as shown in Fig. 5. Our goal is to match
the image with that instantiated from the anatomical
model. This is achieved as a two stage process. The first
we call global matching where a global geometric trans-
form is applied manually to rotate and stretch the image
so as to bring it into approximate correspondence. The
second stage, elastic matching, is an automatic process
which establishes a continuous, sub-pixel correspondence
between the two images.

Anatomical model Anatomical model
instantiated with

TR =2000 and TE =100

MR image Model image

Initial
estimate

of
discrepancy

Final
estimate

of
discrepancy

Figure 5: Example instantiation of the anatomical
model.

Figure 7: Multiple scale matching.

Global Matching

The position, orientation, size and aspect ratio of a MR
image may differ from those of the anatomical model.
To enable the matching process, a global transformation
needs to be done which involves translation, rotation,
scaling and elongation. This was carried out manually
and the results are shown in Fig. 6.

Note that all of these transformations except the elon-
gation are irrelevant to the variations of MR images from
model images.

Elastic Matching

The geometric shapes of tissues are different among indi-
viduals. All brains are different and hence, the anatomi-
cal model can be viewed as a special (average) individual.
The aim of the elastic matching is to measure all the dis-
crepancies between the two special cases (the model and
the patient).

The matching process used here is a multi-scale signal
matcher(MSSM) [4]. It input is the globally matched
image pair and its output is a pixel-by-pixel, continuous
measure of all image discrepancies. Discrepancies are
represented by two images, one which depicts all horizon-
tal discrepancies and the other which depicts all vertical
discrepancies.

Fig. 7 shows the software architecture for the multi-
scale signal matching algorithm. Each of the two input
images is blurred using a large V2G filter whose size is
determined by a. For each pixel in the model image,
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Figure 8: Elastic matching of patient and model images.

the matching pixel in the medical image is searched for,
using a cross-correlation function. The cross-correlation
searches the neighbourhood of a pixel rather than a sin-
gle pixel to provide the matching score. The search
starts from the initial discrepancy estimate, e.g., (0,0)
and ends at a local optimum around that initial discrep-
ancy estimate. For the coarsest filter, the displacement
of the pixel in the medical image is the initial discrep-
ancy estimate for the algorithm. The output discrepancy
maps (vertical and horizontal) are used as the initial dis-
crepancy estimates for the input images convolved with
a smaller V2G filter of <r/2. The process is repeated and
so past through to finer scale filters following a coarse-
to-fine regime. The output from the smallest filter is the
final estimate of the image discrepancies.

RESULTS

The result of matching is shown in Fig. 8 with the gray
values in the discrepancy maps providing a pixel-by-pixel
measure of the magnitude of both the horizontal and
vertical discrepancy.

Because a correspondence has now been established
between the two, any knowledge available in the model
image can be applied directly to the MR image. For
example, we already know what tissue each pixel in the
model image represents, hence we are immediately able
to classify each pixel in the MR image. Fig. 9 shows
the segmentation of each tissue type in the matched MR
image.

Furthermore, since we knew the transformation we did
in global matching, we can do the inverse transformation.
Fig. 10 shows the segmented tissues following the inverse
transformation which can be used directly to calculate
the areas of each tissue type. Table 2 gives a summary
of tissue type areas in pixels.

Bone/Scalp

GM

CSF

WM

Figure 9: Segmentation of the transformed MR image.

Bone/Scap

GM

CSF

WM

Figure 10: Tissue segmentation for the original MR im-
age.

GM
1789

WM
2100

CSF
967

Bone/Scalp
1818

Table 2: Area measurement of tissues in pixels.
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DISCUSSION
This experiment has demonstrated that, for a non-
pathological MR image of a normal brain it is possible to
perform tissue segmentation by direct matching at the
image level. Such an approach may well prove sufficient
for providing a simple diagnostic index. For example, in
calculating ventricle volume which would facilitate the
diagnosis of hydrocephalus [3].
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