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An application of Iterated Function Systems to the
problem of automatic generation of two-dimensional
shape representation is presented. A definition of an
Iterated Function System is given, and the properties
that make it suitable for shape representation are
described. Details of programs implementing shape
coding and rendering are provided together with an
assessment of their performances.

A fundamental requirement of any vision system designed
to perform recognition tasks is a library of representations
of objects it is likely to encounter. The classic approach to
constructing such representations is to decompose the
shape into simple primitive elements. However, for
complex shapes it is usually necessary to use a large
number of such primitives to achieve an accurate
decomposition. The alternative is to define more complex,
context-specific primitives, which would be of practical
use for only a small set of shapes. The advantage of using
an Iterated Function System (IFS) instead is that it enables
us to construct a recursive definition of shape. This is
achieved by using contractive affine transformations of the
original shape as the primitives in its decomposition, and
thus removing the need for shape primitives to be defined
prior to encoding.

As a first approximation an IFS coding can be thought of
as simply a compact list of numbers corresponding to the
transform coefficients that describe how a shape maps
into itself - in effect how the shape can be covered by a
collage of smaller versions of itself. These numbers can
then be used by a very simple rendering algorithm to
produce a reconstruction of the whole of the original shape.
This reconstruction is known as the 'attractor' of the IFS.
The rendering process is rapid, stable, and does not depend
on any information external to the IFS to enable accurate
reconstruction. The nature of the IFS code enables the
rendering of a shape with the same speed and accuracy
independent of the size and orientation required.

Previous applications of IFS theory to shape encoding
[1,2,3], have relied heavily on the interaction of the user
with computer programs in order to make the necessary
shape collages, and in the case of [3], coding was restricted
to shapes that were self-similar and that lend themselves
easily to the IFS coding technique. The methods outlined in
our paper constitute an entirely automatic way of
producing IFS codings.

Section 1 of this paper gives the definition of an IFS and
shows how in theory it is possible for one to describe any
shape. Section 2 details the programs used in the
implementation of IFS theory for both coding and
rendering, and section 3 gives preliminary results from

their use. Section 4 contains a discussion of the progress
made so far and the directions future research needs to
take.

1. ITERATED FUNCTION SYSTEMS

This section defines what we mean by an Iterated Function
System and demonstrates how it can be used to represent a
shape. For brevity the following is not mathematically
rigorous, but a full derivation starting from first principles
can be found in [1].

Definition: A hyperbolic Iterated Function System consists
of a complete metric space (X, d), together with a finite set
of contraction mappings, wn(X), with respective
contractivity factors sn, for n = 1, 2, ..., N. The notation for

an IFS is:
{ X : w n , n = l , 2 , . . . , N } ,

and its contractivity factor is:

s = max {sn : n = 1,2, . . . , N}.

For applications in two-dimensions the space, X, is
simply the Euclidean Plane and d, the standard Euclidean
metric function. The wn are just transformations which
map points closer together by a factor determined by their
contractivities s,,, which take values in the range (0,1].

The important property of an IFS is that if we define the
transform W(A) to be:

W(A) = w0 (A) U w^A) U w2(A) U . . . U wN(A),

where A is a bounded region in the plane, then the sequence
of regions AQ, AJ, A2,. . ., Am given by iteratively applying
W to A such that:

, k = 0, 1,2, . . . . m,Ak = Wk(A) =

where W0(A) = A has a limit, L, as m approaches infinity.

That is:
W(L) = L.

This limit region is called the attractor of the IFS.

We say that an IFS represents a given shape if that shape
is the attractor of the IFS. Physically then, the
representation will consist of a list of transform
coefficient values.
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IFS Coding

The problem now is to be able to find the IFS of a given
region in the plane. The solution is provided by the Collage
Theorem [1,2,4,5], which states that for a given region, A:

h(LA) < (1-s) -1 h(A,W(A)) for all A,

where h is the Hausdorf metric function, L the attractor,
and s, the contractivity factor of the IFS.

Put simply, the theorem says that as the union of the
mappings of the IFS becomes 'closer' to the original region
A, so the attractor of the IFS becomes closer to A also.
Thus, all that we need to do is to make a 'collage' of the
given region using contractive mappings of itself.

Attractor Generation

From the derivation in the previous section it is apparent
that given an IFS the corresponding attractor can be
generated by iteratively applying the associated set of
mappings to an arbitrary starting region. However, this will
become an inefficient process when the number of
transforms becomes very large or when the convergence to
the attractor is slow. An alternative method, described by
Barnsley [1,2], requires a modification of the basic IFS in
that a probability, pn, is associated with each of the

mappings, wn. The notation for the modified IFS is:

{ X : ( w n , p n ) , n = l , 2 , . . . , N } .

The attractor of this IFS can now be obtained using the
following Random Iteration Algorithm:

1. Take an initial point in the plane, x0. Although the choice

of this point can be made arbitarily it is best if it lies
somewhere on the attractor.

2. One of the transformations from the IFS is chosen 'at
random' with the probability of choosing wn being pn.

3. The selected transformation is applied to the point x0 to

produce the point x}.
randomly and applied to

Another transform is chosen
j to produce x2, and so on.

4. The process is repeated for a large number of iterations
and the set of points {x0, Xj, . . ., xn) that is produced will
constitute an approximation of the attractor of the IFS. (It
is only an approximation since it contains only a finite
number of points).

The values of the probabilities of the transforms can be
chosen arbitarily but to ensure an even distribution of
points over the attractor the they should be in proportion to
the area of the coded region that each covers.

The implementation of the Random Iteration Algorithm is
discussed in the next section together with a program that
calculates the IFS of a given shape.

2. IMPLEMENTATION

The implementation of IFS coding and rendering of the
attractor has been attempted using ITEX 150 image
processing hardware with a Sun 3/75 workstation running

C software under the UNIX operating system. Initial
attempts at producing codings have been conducted upon
simple shapes in binary images generated by the systems
graphics capabilities.

Automatic Coding

The approach taken has been to concentrate on getting the
best fit collage to the boundary of a given region to
maximise the accuracy of the shape information. The
operation of the coding program can be broken down into
the following stages:

1. The boundary points of the given shape are detected
using a simple edge following algorithm. An arc-length
value is calculated for each point and the centroid of the
shape is determined.

2. At each boundary point the value of dr/ds is calculated,
where r is the radius value of the point measured from the
centroid, and s is the arclength value along the boundary.
The values obtained are smoothed using a Gaussian with a
sigma value of approximately 1.7.

3. The boundary is segmented into a number of arcs, the
endpoints of which correspond to zero crossings of the
smoothed dr/ds values.

4. Any arcs of less than five pixels in length are merged
with surrounding arcs.

5. The parameterised equations of the arcs are then
approximated by fitting to functions quadratic in s using a
least squares method. Each arc is then classified as either
linear, concave, or convex by inspection of the equation
coefficients. At this stage any adjacent straight line
segments with similar gradient values are merged. This is
necessary to counteract the tendancy of the segmentation
process, based on dr/ds values, to break long straight
segments at a point perpendicular to the centroid.

6. Using a least squares method contractive
transformations which match arcs of the same type onto
each other are calculated. Only transformations with
contractivity factors less than 0.8 are considered to avoid
the value of the (1 -s) -1 factor in the Collage Theorem
becoming too large. An error function is calculated for each
transform generated to test the quality of the match. The
error function is:

where Sx and Sy are the scale factors of the transform in

the x and y directions respectively, and Ea is a measure of

the overlap between the transform of the shape and the
original. All values are normalized to restrict E to the range
[0,100].

7. If the best error value obtained for a match to a given arc
is less than the set threshold then the transform is accepted
as part of the IFS and written to a file. The matched arc is
then removed from further consideration. If no suitable
match is found then the unmatched arc is halved and the
two new segments so produced are placed at the back of the
segment queue.

8. The search continues considering each segment in turn
until the queue is empty.
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Attractor Rendering

The only difficulty with the implementation of the Random
Iteration Algorithm is the choice of probability values. This
is best overcome as described in [2], if the transforms are
restricted to being affine transformations for which the
determinant of the transform matrix is equal to the ratio of
the area or the transformed region to the area of the
original. Thus, choosing the probabilities for each
transform to be in proportion to its determinant will result
in an even distribution of points over the attractor. In
practice this can give very small values of probability for
some transforms so a minimum threshold is set below
which probability values are not allowed to fall. A separate
program has been developed that reads a file containing an
IFS, calculates suitable probabilities for each transform,
and produces its attractor at the position, scale, and
orientation specified by the user.

By choosing the centroid of a shape as the origin of our co-
ordinate system during coding we can guarantee that the
point (0,0) lies on the attractor. Taking this as our initial
point for the Random Iteration Algorithm means that all
subsequent points can be plotted without having to wait for
them to converge onto the attractor.

3. PROGRAM PERFORMANCE

The IFS coding of simple shapes contained in binary
images has been achieved using the programs described in
the previous section. Figure 1 depicts the segmentation of
the boundary of a simple heart shape based upon the
information contained in the dr/ds plot. Attempts have
been made throughout the program development to make it
as insensitive to noise as possible, especially in this initial
segmentation stage. The success of this is shown in figure 2
which depicts the segmentation of the same heart shape
after a rotation through 45 degrees resulting in the addition
of significant amounts of noise along the boundary. By
comparision with the previous figure it can be seen that the
two segmentations are almost identical, having the same
number and type of boundary segments, but with a slight

IMAGE SEGHENTflTION

a r c - l e n g t h ( s )

IMAGE SEGMENTATION

arc-length (s)

Figure 1. The segmentation of a heart shape in the
absence of noise.

Figure 2. The segmentation of a heart shape in the
presence of noise.

shift in the positions of the segment endpoints. This is
despite the fact that the graph in figure 2 has many more
zero crossings than that in figure 1.

The results of the collage construction are shown in figure
3. The sequences of collages corresponding to decreasing
error thresholds show a clear convergence to the original
shapes. An effect that becomes apparent at low thresholds
is that the transforms appear to migrate towards the
boundary leaving large gaps in the interior of the collage.
This is due to the transforms becoming very small in order
to minimise matching error and as a result they do not
extend much into the body of the shape. In themselves the
gaps in the collage are not a problem since it is only the
shape boundary information we are really interested in.

Figure 3 also shows the output from the attractor rendering
program for each of the collages. Again the determinstic
relationship between the error threshold and the accuracy
of the representation is well demonstrated. However, the
effect of leaving gaps in the collage becomes more
noticable because of the recursive structure of the attractor
which means that gaps get mapped along with each
transform resulting in a more diffuse coverage of the
attractor than could be expected from examination of the
original collage. This too should be acceptable because the
collages have no gaps on the boundary and so none should
appear in the rendering of the attractor. It can be seen in
figure 3c that this is not in fact the case since large sections
of the boundary that are clearly visible in the collage have
failed to be produced during the rendering process. This is
because the missing regions of the boundary have been
matched to themselves during collage construction. The
practical result of this is that a narrow section of the
collage is being constructed from an even narrower section,
(a contraction mapping of itself). Upon rendering the
attractor becomes vanishingly thin at these points.

Figure 4 shows the results of collage generation for the
heart shape at varying thresholds and in the presence of
noise. As demonstrated the segmentation is quite robust so
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the differences between these collages and those in figure
3a are due almost entirely to the effect of noise on the
calculation of the error measure for each transform. As
would be expected more transforms are required to
produce a collage of the noisy image. However, the limiting
effect of the resolution of the original image is
demonstrated by the fact that both the noisy and clean
images require a similar number of transforms when the
error threshold becomes too small.

Finally, the time taken for the IFS codes to be produced

ranged from 60 to 300 seconds depending on the number of
transforms used and the complexity of the shape. No
attempts have been made to optimise the speed of the
coding program but it is certain mat an improvement of an
order of magnitude can be achived with the hardware
currently being used. Rendering of the attractor was
achieved at a rate of 1500 pixels per second and the
pictures in the figures contain 50000 pixels each. The
speed of the rendering process is only limited by the speed
at which floating point calculations can be done.
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Figure 3. Collages and their attractors for the coding of various shapes. In each of the figures a-d the picture on
the top row is the original shape. The next row is a sequence of collages and beneath them is a rendering of the
corresponding attractor. The error threshold and the number of transforms used in the construction of the collages
is given beneath each collage-attractor pair.
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Figure 4. Collages and attractors for codings of a
noisy image

4. CONCLUSION

This paper demonstrates that it is practical to
automatically generate IFS representations of two-
dimensional shapes to a level of accuracy limited only by
the resolution of the original image. The method has been
assessed in terms of the speed of code generation, accuracy
of shape reconstruction and the ability to cope wih noisy
images. The results show that viable applications to
machine vision could be possible provided attention is paid
to the following areas:

i. To avoid the appearance of gaps in the shape boundary
upon the generation of the attractor it is necessary to find
collages that completely cover the original shape. There are
two approaches that can be made towards the solution of
this problem. Firstly, we can simply expand the current
technique and look for transformations that cover the
interior as well as the boundary. Alternatively, we can
follow the example of [3], and add a 'fixed set map' to the
IFS -in effect describing a shape as the union of the
attractor of the IFS and a fixed region. If the fixed map
can be expressed as the combination of ellipses or a
similarly simply defined shape then it can be incorporated
into the IFS in such a way that the Random Iteration
Algorithm can still be used. This second method does
however detract from the simplicity of the idea of a
completely recursive definition of shape.

ii. As it stands the methods described in this paper are
capable of producing reasonably accurate reconstructions
of a coded shape with possible applications to object
recognition through template matching using the rendering
of the attractor. A more powerful way of using the IFS

codes would be to be able to match shapes in the 'code
space' - by the direct comparison of code coefficients. In
order to attempt this the values of the transform
coefficients in the IFS must be made invariant with respect
to the scale and orientation of the coded shape.

iii. The present search strategy for collage construction is
relatively crude and rather slow. Often the calculated IFS
contains one or more 'redundant' transforms in that they
have been included to match a section of the boundary that
has already been adequately covered by other transforms
matching different sections. Thus, a more sophisticated
search strategy could produce more compact codes and
more quickly.

iv. The figures of the previous section show the importance
of setting the correct error threshold. If the threshold is too
high poor representations are obtained, whilst a too low
setting results in extended execution times for relatively
little improvement in the representation. Methods for
determining the optimum threshold for a given shape are
required, or else the development of a completely
threshold-independant coding scheme.

Research is currently in progress in all of the above areas.
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