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This paper describes a shape recognition
method which uses a reference template
to edit linked lists of edgels by
concatenation and re-segmentation to
give an optimal match. Dynamic
programming is used to find the optimal
re-segmentation, and is tolerant to
distortion, outlines embedded in longer
lists, gaps and missing portions. Unlike
previous work, the combinatorial
advantage of using edge linking prior to
matching is retained, but poor decisions
made by the linking process can be
revoked during the dynamic programming
stage without significantly degrading
optimality. The paper discusses the
extension to scale and rotation
invariance, and the use of stochastic
models in place of reference templates
for generic feature extraction and
distortion modelling.

Suppose we aim to recognise objects in
images by finding arrangements of
characteristic shape features. These
features might be primitive generalised
shape features (eg arcs, lumps,
geometric shapes) or shapes specific to
an object (eg a roof profile). Ideally,
we might proceed by first extracting
arbitrary line features from the image
using only local constraints, divide the
lines extracted into perceptually
significant segments, and then recognise
the segments as characteristic features
by some form of matching process. This
philosophy is behind Marr's thesis for
vision, and has figured in many image
understanding systems where object
specific constraints are not employed at
this level.

The pursuit of this philosophy has led
to a wide range of published work on
edge extraction techniques and on
methods for segmenting outlines into
component elements, typically by
examining local orientation derivatives,
eg Brady & Asada*-.

Despite this extensive literature,
success in using line segments to match
against object level models has been

limited to domains where sparse edges
are clearly illuminated, surfaces are
free from texture, and the objects are
in a benign background. Even in these
favourable conditions, most workers have
found it necessary to use motion or
stereo to aid the object matching
process. In open world situations, such
as those encountered by autonomous
vehicles, monitoring or security
systems, and military applications, the
situation is far worse. The amount of
data requires some measure of local
feature analysis, but the effectiveness
of edge extraction, linking and
segmentation is so variable, and
fragmentation so severe, that a data
driven (bottom-up) approach to
generalised shape extraction is not
credible.

It is important to note that many edge
extraction "defects" are caused by
fundamental image ambiguities which can
never be resolved by purely local means,
eg lines may meet in ambiguous
junctions, an object may have been
viewed through a mesh, or may have
fortuitous alignments with background
features.

Various methods have been used to impose
higher level more global constraints,
for example the Hough transform^, or the
model based methods of Sullivan^ or
Bolles^. In open world scenes all these
methods imply large amounts of
computation unless some form of
preliminary cueing or attention
focussing is used.

What is needed is a technique which can
allow high level constraints to be
applied to the feature extraction
processes, but which avoids the
combinatorial explosion implied by such
constraints. Several mathematical tools
exist which have the right behaviour,
the most promising candidates being
simulated annealing and dynamic
programming^ (DP). Simulated annealing
has generated extensive interest
recently in the context of neural
computing and associative memories, but
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special hardware will be needed before
this approach can be used in real time
applications. Dynamic programming is
only applicable to sequential
formulations, and uses local computation
to find global optima provided certain
constraints are satisfied, but where it
can be used, it gives a dramatic
reduction in problem dimensionality.
Dynamic programming has been used with
great success in speech recognition",
but has received little attention in
machine vision, perhaps because of the
apparently inappropriate restriction to
sequential domians.

Examples of the use of DP in image
analysis are given in Ohta & Kanade?
where DP is used to match intensity
profiles between raster lines in stereo
TV images; Furst & Caines° where edge
locations are fitted to raw image data;
Fischler & Elschlager^ who consider
several applications of DP to matching
pixel data and high level relationships;
whilst Maitre & Wu*-® use a pixel space
distance metric to to match coast-line
contours against map data. Much of the
published work use DP to match
individual pixels, rather than pre-
segmented data. This has an attraction,
and in principle DP will work without
any explicit ordering of the data.
However, with degraded data the
sequential constraint of DP tends to
cause desired matches to be rejected
part way through the analysis in favour
of spurious alignments, and
unnecessarily heavy computation cost is
incurred. Additionally, the
concentration on matching in pixel
coordinate space impedes shape
generalisation. The use of DP to edit
linked edge data, or match in other
metric spaces, seems to have been
overlooked. The vision literature also
lacks reference to the extension of DP
by the use of stochastic reference
models or re-estimation techniques, and
there is no discussion of explicitly
modelling the allowed distortions in a
particular shape.

The aim of the current research is to
re-visit the application of dynamic
programming to machine vision, with
particular interest in the concatenation
and re-segmentation of connected lists
of edgels. Given that connected
segments of useful length can be
successfully extracted, it seems
unreasonable to ignore this connectivity
in formulating the DP optimisation, but

instead use DP to amend already formed
edgel lists. As this paper shows, this
approach opens a new avenue for model
based matching in image data.

BASIC MATHEMATICS

Assume we have a low-level image
operator which converts an image into a
thinned edgel map, and that the edgel
map is then linked into a set of line
segments constrained by a local property
(eg orientation, strength, fuzziness).
These edgel lists are, in the main, a
useful representation of the image data,
but will suffer from fragmentation,
unhelpful linkages between object and
background, with several identifiable
features (eg corners and arcs) embedded
in any one list.

We wish to ascertain the location and
probability of a set of reference
features which have been defined,
perhaps by manual annotation, as an
intermediate level feature space
suitable for the task at hand. The
reference features might be important
shapes, outlines or internal elements
specific to particular objects, they
might be generic features such as arcs
or corners, or they might be complete
object outlines.

ie we have a mapping from pixels to
thinned edgels with property vector P:

E(x,y,P)

Edgels are formed into a set of segments
{S}, each segment being itself a linked
set of edgels:

S2, ...Sn}E(x,y,p)

Reference shapes {Rm} are annotated
example sets of edgels linked by a
reliable method, eg by hand or under
controlled illumination.

Our aim is to find the sub-set of {S}
which provides best support for the
existence of an R-i subdividing
particular Sj/s where necessary.

Dynamic Programming

Dynamic programming in the context of
pattern recognition is concerned with
matching two patterns represented as a
sequence of observations {X̂ -} and {X^}.
Each element of X^ is matched against
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each element of X 2 and a local matching
cost calculated. This local cost is
added to the cost of the allowed
previous states, to find the lowest
accumulated cost so far, C^ ̂ . The
allowed previous states are determined
by a set of productions, as indicated in
Figure 1, each with an associated cost.
When all the C^j has been computed, the
optimum match 'is given by the lowest
terminating cost, and if a record has
been kept of the productions used at
each state, the optimum match can be
directly traced back through the C^j
matrix, where

representations. After considering
various options, an orientation vs
distance mapping was adopted. This
mapping, which has been used elsewhere
in shape analysis and segmentation
schemes, gives translation invariance
and is amenable to rotation by the
simple addition of an angle offset. It
leads to a simple matching cost
function, and local orientation can be
extracted with reasonable accuracy. It
is also plausible that a sequence of
orientations along an outline should
generalise well compared with, say,
distance based metrics.

min[P£ost+
k

where c(i,j) is the local distance
metric between x\ and X? and P is a
set of production vectors and costs
which define the permitted transitions
between states.

Reference
Pattern

lest Pattern

Allowed
Productions

i-l.i

Optimal registration
with lowest cumulative cost.'

C(i,j) cumulative cost matrix

Figure 1. Dynamic programming algorithm,
showing an embedded match.

If the reference ana test patterns have
m and n states respectively, the total
computation scales as mxn, rather than
n m in the case of an exhaustive match.
No loss of optimality occurs as long as
later decisions in the cost calculations
have no impact on decisions already
made. The success of dynamic programming
in shape analysis hinges upon whether
this is an acceptable assumption.

Representation Used

Setting up the matching space and cost
function is crucial to success in using
DP, and it is here that other workers
seem to have chosen inappropriate

Linked segments passed to the algorithm
are first converted into a re-sampled
list of points of constant linear
spacing (allowing for the cartesian
sampling in the edgel location), with
the local orientation and other
properties (contrast and edge type)
being stored as a list of records.
Reference templates are treated in
identical manner. Each segment is also
represented in reversed form to allow
tracing in either direction, and a
matrix of Euclidean endpoint distances
is formed between all segments.

The DP algorithm is applied between the
reference and each segment of linked
edgels, with productions which force a
steady progression along the reference
states. The local cost function used is

- Qj) ]2/angle_weight

where A delivers the angle difference
and angle_weight is currently set to 10.

A cost accumulation matrix cjf
up for each segment, and

is set
g , at the

initiation of the DP computation, all
elements of each C^ are set to infinity
except the columns C^ . which are set to
zero to allow entry at any state in the
segment at the start of the template.
This enables embedded shapes to be
segmented from a longer outline,
providing only leading and trailing
segments are connected to unwanted data
(this can be achieved by the line
extraction algorithms breaking all
segments near other segment ends).

A cost matrix is set up for the
productions P = {(-1,0) (-1,-1) (-1,-2)
(-1,-3)} for every reference state,
which enables the production costs to be
dependent upon the position in the
reference, eg make some parts
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"springier" than others. Normally, the
(-1,-1) production has zero cost, with a
rising cost for the other productions to
penalise distance distortions between
the segment and the reference.

For the the first state of each segment
a connection cost to all other segments
is computed. This refers to the
endpoint distance matrix and selects the
lowest cost transition from the end
states of all the other segments for the
previous reference state.

ie on entry to the kth segment,

C^j - min [ d k l + C j . 1 > e n d ]

1
where d is the Euclidean distance
between the start of segment k and the
end of segment 1.

To allow for gaps between segments, a
low cost threshold is imposed for the
(-1,0) production at the start and end
of each segment. For gaps or rogue
points within a segment, another higher
cost threshold is used to prevent the
killing of otherwise good paths.

Closed outlines can be easily
accommodated. Normally, a segment is
not allowed to join to itself, and never
to its reversed copy. However, if the
reference template is a closed shape, ie
its ends are close relative to its
length, segments are permitted to join
to themselves to allow an arbitrary
start/end position around the shape.

During the computation, the best
production used is recorded in a
decision matrix. At the completion, all
the cumulative costs are scanned for the
lowest value, being the termination for
the optimum route. Using the production
decision matrix, it is then possible to
trace back selecting the particular
states on the optimum path, forming the
recognised shape by selecting edgels
from the input data. If more than one
instance of the shape exists, several
termination points will be found with
comparable costs (assuming they do not
include common segments). During the
traceback phase, sub-costs can be
accumulated for angle errors, segment
gaps, and distortion, which can be used
by higher level processes to select
between a number of optimal and sub-
optimal solutions.

Setting the Weight Parameters

A number of controlling weight
parameters are needed to encourage the
required behaviour. These are:

Angle Difference Weight. This scales
the local cost imposed for a given
angular difference between a segment and
reference state (10).

Connection Weight. This scales the
connection cost between segment ends
(10).

Production Weights. Determines
springy the match will be (50).

how

Skip Penalty Limit for Ends. Sets a
limit on the angle cost at the start and
ends of segments, to allow a low cost
for missing portions (100).

Skip Penalty Limit. Sets a limit within
a segment for the cost from a rogue or
missing edgel (200).

Kill Threshold. Sets an upper limit on
accumulated costs which terminates a
path part way.

The figures currently used are shown in
brackets. These have been derived on
the basis that orientation noise is
likely to be about 10 degrees, giving a
matching cost of about 10 per pixel. A
similar penalty is imposed per pixel gap
between segments, and an off-diagonal
production is penalised to be equivalent
to about twice the angular noise. The
skip penalty is set to be about twice
this value, on the basis that gaps
between segments will be small, and an
arbitrary cost of double this was chosen
for the within-segment threshold. So
far there has been no need to alter
these values, although adjustment will
control how the algorithm generalises
reference templates.

RESULTS

Figure 2 shows the segments extracted
from a car image taken from the Alvey
MMI/007 image database using the
Sleigh^- line extraction algorithm. In
order to exercise the shape algorithm,
some additional breaks and connections
have been introduced by hand. Four
reference shapes have been annotated
from this data using a line segment
editor, one corresponding to the
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combined roof and bonnet profile, one to
left hand window, a mirror image of this
window, and finally the lower sill and
wheel arches. These are displayed in
Figure 3.

Note that the line segment which runs
round the front of the car will need
breaking to match to the 1st and 4th
references, there are several breaks in
the other segments, and the a gap has
been introduced over the rear wheel arch
with an extraneous segment terminating
in the gap. The rear window is a closed
shape with a start/end point different
from the reference, and the right hand
window, as well as being formed from two
segments, has a slightly different shape
to the reference.

•13

-10-
.14"

'19
\ r

•'is-/1

Figure 2. Image of car and
line segments

extracted

Figure 4 shows the identified shapes
found by the DP algorithm, and it can be
seen that the lines have been correctly
re-segmented to give the best matches to
the reference templates. Figure 5 shows
the cost matrices for the first 12
segments when matched against reference
|, showing the path traced through
segments 2, 3, 4, 5 and 7.

Figure 3. Reference templates annotated
by hand

Figure 4. Re-segmented shapes
extracted from Figure 2

The raw image was then reduced by a
factor of two, and a new set of segments
extracted, which were again matched to
the original references. Once again the
correct concatenations and segmentations
were achieved (Figure 6) but, of course,
the cost is greater because of the large
number of off-diagonal productions. As
discussed in the next section, it is
possible to distinguish between angle
and production costs, and to confirm
that this match is a good one but at a
different scale. ...

As a final illustration, Figure 7 shows
the 1st and 4th references were applied
to lines extracted from an image of a
different car viewed from the same
angle. A good match was obtained for
the sill and wheel arch shape, but the
limiting cost threshold was reached
before a valid shape was found for the
roof line. This is not unreasonable,
since line 26 (the windscreen) is closed
and has no endpoints near the desired
lines 15 and 27. As already noted,
although leading and trailing segments
can be entered at any point without any
cost, this cannot apply to interior
segments. If the pre-segmentation stage
had broken line 26 by the proximity of
the ends of lines 27, a suitable match
would have been found.
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Figure 6. Image, lines and re-
segmentation for half size image.

INVARIANCES AND AMBIGUITY

Any probabilistic evidence accumulation
technique will invariably find some
measure of support for any shape, but it
is important that a valid match is
distinguishable from random
similarities. It is also important that
in finding a particular poor match, a
more appropriate match has not
indavertently been rejected.

Ambiguity and Scale Invariance

Dynamic programming will guarantee to
find the optimal solution, but only
within the sequential decision
constraint on which it is based. This
leads to potential ambiguities in scaled
data, since a shape with noisy
orientation or non-linear distortion
will accrue a similar global cost to a
scale difference with the reference.

Figure 5. Cost
reference 1 in Figure 3

As described, the DP algorithm will
matrices for match shapes which have a particular

sequence of orientations, and is not so
concerned with the distances between
differing orientations. Increasing the
off-diagonal production cost reduces
tolerance to length distortions, but
still does not encourage the costs to be
distributed uniformly along the shape,
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as might be desired. This does not
cause confusion, since it is always
possible to examine the distribution of
costs in a solution after tracing the
optimum path, but could result in a
better solution, with more regular
costs, never being found.

following strategy has been adopted
minimise the distortion ambiguities.

to

Figure 7. Lines extracted from
different car, with only reference 1
identified.

The DP literature is rich with various
refinements to overcome this effect,
mainly based on adjustment of differing
costs and use of longer range
productions. Some gain can be achieved
by these methods, but usually at
considerable computational increase. A
later section in this paper suggests a
solution to this based on duration
modelling in Hidden Markov Models, but a
number of simpler extensions to DP
algorithm are worth considering. The

First, an edgel extraction algorithm is
used which gives an accurate measure of
local orientation, even in noise, by
adaptively adjusting the scale of
analysis in response to the local image
properties. This is important to avoid
swamping other costs by noisy
orientation values. The non-linear
angle cost function helps here. Serious
ambiguities can arise from the
horizontal production (ie staying at
same point in the segment along the
reference), but since this production is
frequently used to compensate for scale
mismatch, it cannot be given a high
cost. An effective solution is to carry
a scratch vector during the forward
phase, this vector recording the number
of times this production has been used
consecutively for each segment position.
The cost can therefore be made to rise
to encourage a more uniform distortion,
and can cut off after a certain number
of stationary counts (corresponding to a
gap or missing segment). This
additional term does not guarantee
optimality, with a better overall path
being excluded by an earlier decision,
but with the single valued data used in
this application, this should not be a
serious limitation.

To reject unreasonable distortions, a
check can be made during traceback to
ensure that a uniform production pattern
emerges. Partial costs are economically
formed for orientation, production, end
connection and gap costs. It is then
possible to reject a particular solution
and look for others. In some cases, for
example where an alternative solution
does not share any segments, this can be
done simply by tracing the next lowest
cost, but if the rejected shape shares
segments with a better solution, more
drastic and sub-optimal methods must be
used, such as marking the undesired
route with a special cost, and re-
applying the dynamic programming
computation.

Rotation Invariance

An important advantage of the (S,9)
mapping is the easy way orientation
shifts can be executed by adding a
constant. If it is desired to match
shapes in arbitrary orientations (this
is often not a requirement), two
approaches can be employed. If segments
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are already well segmented, a simple
approach is to normalise the orientation
of the reference and segments. A more
powerful approach is to use a second
cost matrix to store the local
orientation difference between reference
and each edgel. The local cost then
ignores angle difference, but the
production cost then includes a term
which encourages a constant orientation
between adjacent states. This may lead
to matches to "droopy" shapes, but this
can be tested during traceback.

Computational Cost

If the reference shape has length L, and
there are N line segments of total
length P, the total number of d(i,j)'s
to be calculated is

2(3P + N2)L

where the first term represents the
costs for applying the productions
within each segment, and the second term
the costs associated with segment
transitions. A typical problem might
have reference shapes 100 pixels long,
and have 100 extracted segments with
average length of 50 pixels. This
involves 5 Million cost calculations
for each reference. Each cost
calculation involves about 5 operations,
hence a 25 MOP processor would process
one reference per second. By killing
very expensive paths during the DP
calculation, only a fraction of the cost
matrix usually needs evaluation,
bringing the figure down to below 10
MOPs per reference. Such a problem
could be easily mapped onto a Transputer
array, with each processor computing one
reference match.

As a comparison, a generalised Hough
implementation would require a much
larger number of operations, depending
upon the total image size and the number
of degrees of freedom. Additionally,
the entire accumulation space needs to
be searched for a peak, instead of the
simple traceback phase of the DP
algorithm, to find the optimum shape.

STOCHASTIC MODELLING OF TEMPLATES AND
SHAPE RIGIDITY

The DP algorithm as described here
suffers from three limitations: a) it
uses only one sample template for each
reference; b) length distortions cannot

be controlled without compromising
optimality; and c) the various weights
controlling the relative costs must be
set by hand. All three limitations can
be overcome by the use of hidden Markov
models (HMM), particularly when the HMM
is extended to include longer range
correlations between states, using the
methods developed in hidden semi-Markov
models by Russell & Moored. The
application of Hidden Markov Models and
DP to shape recognition is described in
outline in this section. A detailed
account is to be published separately.

The basic idea is to represent the
template as the output of a set of
states in an HMM, using a training set
of example references to determine the
HMM probabilities, using the Baum-Welch
or Viterbi re-estimation algorithms.
One also models the duration probability
for each state, where the duration
corresponds to staying in a particular
HMM state for a given number of image
segment pixels. One then uses the DP
approach as before, except that instead
of simple productions to step through a
reference template, one has a set of
duration probabilities determined by the
training set which are equivalent to the
production costs used before. Hence as
well as capturing an archetype, the HMM
also learns the distortion penalties
along the reference. For example if, at
some points in the reference shape,
greater linear distortions are found,
the re-estimation technique will give
lower costs for off-diagonal productions
than in the less variable parts.

Assuming a representative training set
(the size of which will depend upon the
variability within each shape), this
approach offers significant improvement
in both specific and generic shape
recognition, with only a modest
computational increase.

CONCLUDING REMARKS

A continuing difficulty in robust
machine vision is providing a suitable
interface between high level techniques
and pixel operations. "Intermediate
level" vision is increasingly being seen
as the main remaining technological
hurdle to achieve improved machine
vision competence, and can be described
as techniques whose role is to take data
which has been formed with minimal
commitment to a particular situation,
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and produce symbolic statements about
perceptually important features which
can be directly mapped into high level 8.
object descriptions. Examples of such
features include arcs, 'D'shapes,
polygons, etc, but also include objects'
specific outlines or outline elements,
such as wheel arches, roof shapes,
window outlines.

9.
This paper extends previous attempts to
use dynamic programming in shape
analysis, and successfully addresses the
concatenation and re-segmentation of
fragmented and embedded line segments 10,
using reference shapes as the
constraint. The technique can be used
to recognise shapes or image features in
its own right, or it can be used to
select edgel data which is then passed 11,
to other classification methods.
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