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The problem of finding the spatial correspondence
between an object and the image of the object under
perspective projection is investigated and a new
technique is demonstrated. The technique used is based
upon a geometrical description, or model, of the object
and a non-linear least squares solution of the resulting
equations. An analysis of performance and a comparison
with the previous work of Lowe is given. Three further
areas of application in model-based vision are
discussed.

The key problem with object recognition from a single
image is that the perspective projection used in the
formation of an image is singular. This means that it is
impossible to reconstruct the position and orientation of
an object using only the information contained in the
image of the object. Other information must be used,
such as the spatial characteristics of the object itself in
terms of a geometrical description or model. The
knowledge about the fixed interrelation between lines
on the object, and their correspondence to image features,
allows the construction of a set of simultaneous non-
linear equations in terms of parameters of the object
position.

Once a labelling has been established between image
features and model features the solution of the resulting
simultaneous equations can proceed by use of an iterative
technique. At each iteration the equations are linearised
by an expansion about a base position. The solution of
these linear equations derived by matrix inversion is then
used as the base position for the next iteration.

The use of an iterative technique requires some initial
estimate of the position of the object. Fortunately the
method is not overly sensitive to the initial position,
which can usually be obtained merely by consideration of
the visibility of the features being matched. The method
also allows the inclusion of linear, or algebraic non-
linear, constraints. It is possible to constrain the
position of the object, for example, to lie in a given
plane or allow rotation only about a fixed axis.

The iterative approach to perspective inversion has

previously been studied by Lowe1'2. We propose here an
alternative approach which avoids a non-linearity in
depth and leads to simpler constraints; we call this the
interpretation plane method. The behaviour of the
method is tested using a Monte Carlo simulation on a
simple model. Results for both the interpretation plane

method and the method used by Lowe are given and
compared.

METHODOLOGY

The problem in model based vision is how to take image
features provided by "low level operators" and use them
to determine the position (and orientation) of a three
dimensional model. To do this it is necessary to
determine a correspondence between the features found in
the image and features on the model. For example
"Image line 27 is the line between the off side and the
roof in the model". The problem of how to determine

this correspondence is discussed else where.4'5 Here we
will assume that such feature correspondence hypotheses
have been made.

The data that is available from the image consists of
edges, which may be mapped onto lines in the model.
Straight edges come from a sequence of edgelets which
have been grouped. This means that the end points of the
edges are not very stable. We therefore use only the
analytic form of the line.

The association of image lines with model labels
establishes constraints on the model position. We wish
to find a position for the model which satisfies these
constraints.

If we consider a rigid model then we have six
parameters, three translation and three rotation. This
requires at least six constraining equations. The
constraints contain a number of separate non-linearities
which must be solved in order to determine the spatial
position of the model.

As the model is rotated some features become occluded
by the rest of the model. This presents the problem of
what should occur when model features that are being
used in the perspective inversion become occluded.
Fortunately we need only consider small changes in
orientation which will not cross the boundary between
topologically distinct views of the model. For this
reason it possible to use a wire frame model and exclude
visibility considerations.

The perspective projection of the model into the image is
non-linear in depth. For this reason we project the image
line out into three dimensions to form interpretation
planes. Therefore constraints on the model position can
be expressed as lines in the model lying in their
interpretation planes.
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The rotational component of the model transformation
introduces non-linearities in the constraints. It is not
possible to avoid these non-linearities. Thus it is
necessary to use an iterative approach.

The method then breaks down into a sequence of steps

1. Make a wire frame from the labeled lines.

2. Project the labeled image features out into three
dimensions to form interpretation planes.

3. Set up a system of linear constraints based on
local transformation parameters and an initial
model position.

4. Find the values of the parameters that satisfy
these constraints.

5. Generate a new model position.

6. If the new model position explains the image
features with "sufficient accuracy" then stop,
otherwise, go to step 3

The Interpretation Plane

The camera frame is defined as a right handed system
with the origin at the nodal point of the camera. The y-
axis is used as the depth. The image is formed on a screen
parallel to the x-z plane at distance f, the focal length,
from the nodal point, see figure 1.

We can now set up a frame in the image plane (u,v) with
the origin at the intercept of the camera axis and the
plane, and the u,v axis in the plane and parallel to the x
and z axes respectively.

The perspective projection that takes a point c in the
camera frame into the image plane is given by

and vc = f c (1)uc =f c
y *

From a line in the image we can construct a plane that
passes though the origin of the camera frame and
contains the image line. This defines the interpretation
plane. This plane contains all possible lines in the three
dimensional space which could gives rise to the image
line through a perspective transformation. If the
equation of the line in the image is

a u + p + y v = 0

then the interpretation plane is given by

where

Ac +Bc +Cc =0
x y z.

= af, B = p, C=yf

(2)

(3)

(4)

The Linear Approximation

The transformation between the model and camera
frames can split into two components a rotation
represented by the matrix R and a translation given by
the vector t. The rotation aligns the two frames so that
the axes are parallel and the translation moves the
origins so that they coincide.

Image Line

Nodal Point

Figure 1. The Camera frame with an interpretation
plane projected from an image line

Thus a point in model frame m is transformed into the
equivalent point c in the camera frame by the equation

c = Rm (5)

The rotation and translation each depend upon three
parameters giving a total of six independent parameters
needed to specify the transformation.

The solution of the problem depends upon the choice of
these parameters. The translation vector t is just the
position of the origin of the model frame in the camera
frame and so is linearly dependent on the cartesian
coordinates (x,y,z) and does not present any serious
problem.

The parameterisation of the rotation matrix R is
fundamentally non-linear. In order to get round this
problem we will parameterise not the rotation matrix
itself but the change in the rotation matrix. This is
sufficient since in the non-linear least squares fit
approach we have to expand about an initial, or base,
position.

Let us consider a base transformation defined by

= Rom (6)

then we can parameterise the space of transformations by

c = Rz((pz)Ry(q)y)Rx(cpx)Roin + t + t0 (7)

where the Rx , Ry and Rz are the rotation matrices about
the appropriate axes and t = (x,y,z) is the translation
vector in the camera frame.

This parameterisation spans the space of transformations
but is not orthogonal except in the limit where the <p's
are infinitesimal. Since the transformation we require is
assumed to be close to the base transformation we can
make a linear approximation for the transformation
space in the neighborhood of the base transformation

c = R (cpx, (py, cpz) RQ m + t(x, y, z) +t,, (8)

where
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R =

1 "9z 9y

9z 1 ~9x

"<Py 9x 1

(9)

Equation (8) can be written in component form as the
set of equations

(10a)c x= m'x - qyn'y + <pym'z + x + ^

cy = <pzm'x + m'y - 9xm'z + y + y0

where we have introduced the rotated model vector

m' = Ro m

Linear Constraints

(10b)

(10c)

(11)

A point given by the vector m in the model frame is
constrained to lie on the interpretation plane given by
equation (3).

Therefore, by substituting the values of coordinates in
the camera frame into the equation for the interpretation
plane we obtain the equation

A ( m'x - 9zm'y + (pym'z + x + x 0) +

B( q>zm'x + m'y - 9xm'z + y +y 0 ) +

C (- + <pzm'y + m'z + z + z0 ) = 0 (12)
y + m z + z + z0

If the coefficients of the interpretation plane A, B and
C are normalised, then, for an arbitrary set of
parameters, the left hand side of equation (12) is the
perpendicular distance from the model point to the
interpretation plane. Obviously when the point lies in
the plane the distance is zero and the equation is satisfied.

We can rewrite equation (12) to isolate the parameters
of the transformation to form the constraint equation

A x + B y + C z +

( C m'y - B m'z) <py +

( A m'z - C m'x ) 9 y +

(Bm'x- Am'y)9z =

(13)

(14)

or in the more compact vector form

n • t + (RQm) A n • $ = - n • c,,

where n is the vector perpendicular to the interpretation

plane.

The right hand side of equatuion (13) is minus the
perpendicular distance of the model point to the plane
with the base transformation.

There are six parameters to be determined so at least six
equations are needed. From each straight line in the
model we can obtain two linearly independent equations
by using two arbitrary points on the line. A convenient
choice for these points are the end points of the model
line, see figure 2. This means that at least three
independent straight lines are required to solve for the
six parameters.

Image Plane

Perpendicular

Interpretation Planes

Figure 2. Interpreting two line in the image as coming
from a right angles in tree dimensions.

If two lines being matched are parallel then they only
contribute three independent equations and not the
expected four equations. Thus a parallelogram found in
the image only just constrains the model position. A
line parallel to two other lines contributes no further
information in the analytic case. However, it is of use in
real images because of errors and for rejecting an
incorrect labelling.

Model features other than straight lines can be used
provided they are planar. For example, points identified
on the model such as the center of a wheel. An image
point gives rise to a interpretation line instead of a
plane. It is more convenient to consider this line as the
intersection of two orthogonal planes, in particular a
vertical plane and a horizontal plane, see figure 3.

In the case of planar curves the image curve would be
used to form an interpretation surface. At each cycle in
the iteration it would be necessary to introduce a local
linear approximation for the surface. This would seem
to make extra effort unprofitable except in special
circumstances, hi general the number of constraint

Image Plane
^ ^ ^ ^ ^ Interpretation^ Planes

Image Point \ / \ ^ .

Model Point N ^ 1

1
cndiculars

Figure 3. Constraining a model point to tie in two
orthogonal interpretation plane.
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equations arising from a given line is equal to the
number of degrees of freedom of the line.

Least Square Solution

If we obtain a number of equations n, greater than five,
then we can proceed by using the least squares method.
Then resulting set of n linear constraint equations can be
written in a matrix form as

A 0 = e (15)

where A is an n by 6 matrix of coefficients with row
vector,

A, B, C, Cm'y- Bm'z, Am'z- Cm'x, Bm'x-Am'y (16)

0 is the vector of unknown parameters,

x , y , z , (px , <py , <pz (17)

and e is vector of minus the initial perpendicular
distances to the interpretation planes.

By pre-multiplying by the transpose of A we can solve

for 0 since ATA is an invertible 6 by 6 matrix.

Hence, we find that

0 = ATe (18)

This assumes that equal weight is given to all the
constraints. If this is not the case then this can allowed
for by multiplying the constraint equation by a diagonal
weighting matrix W so that

W A 0 = W e (19)

Which can then be solved for 0 to give

0 = ( A ^ A y W W e (20)

Since we have made a linear approximation the values for
the parameters are not exact and so it is necessary to
repeat the process until the parameters are stable.

At each stage of the iteration it is necessary to compute
the base transformation RQ, t^ The new base rotation

matrix is computed from

R'o = Ry(<py) Rz(cpz) Ro (21)

and not the matrix R since it contains a skew component
of the same order as the angles.

At each iteration the model lines are projected onto the
image and the mean perpendicular distance of the end
points to the image lines is computed. The iteration is
assumed to have converged when this distance is less
than a threshold of one pixel.

Including Other Constraints

The only dependence upon the camera frame is in the
coefficients of the interpretation plane, equation (4).
Thus we can easily combine constraint from other views
of the object. We can also include other types of
constraint. For example we can keep the solution in a
fixed plane by using the constraint

ax + by + cz = d (22)

Or suppress rotation about an arbitrary axis by aligning,
say, the x-axis on to that axis. We can then impose the
constraint

(23)

Of course these constraints are not absolute and will
only be satisfied to the same degree as any of the other
constraints, but we can stress their importance by using
the weight matrix. We can also include other non-linear
constraints providing we can supply a local linear
approximation.

MONTE-CARLO SIMULATIONS

The method outlined has been tested using a Monte
Carlo simulation with a simple model of a cube of size
two meters. The simulation consists of randomly
selecting a position for the model and projecting the
visible lines onto the image. These then form the labeled
image features. A starring position for the iteration is
selected by randomly transforming the correct position.

The test has considered the behaviour of the method with
respect to rotations and translations, by randomly
selecting an axis passing through the origin of the model
and rotating by a random angle about this axis. The
starring point was then offset by a random distance of
up to 20 meters in an arbitrary direction.

The average number of iterations taken to converge to
the solution as a function of the rotation angle and
separation is given in figure 4. As might be expected the
graph shows a symmetry about zero rotation. Also the
number of iterations is independent of the separation.

Since this is an iterative technique convergence to the
solution is not guaranteed. The percentage failure rate
with respect to the rotation angle and separation is
shown in figure 5. Failures come from a number of
sources. The principle causes of failure are divergence of

Figure 4. Number of iterations as a function of rotation

angle in degrees and separation in meters.
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Figure 5. The percentage failure rate as a junction of
angle and separation.

the iteration and in the final position some of the
matched features where not visible. The failures at small
angles where all of the later type. These where due to
one or more faces of the cube being only just visible in
the starting position.

Lowe's method converged more slowly, particularly at
large separations due to the non-linearity in depth of his
equations. However, the failure rate was lower. These
results did not depend upon wither a perspective
projection or Lowe's projection was used.

APPLICATIONS

Use on Real Images

Low level edge data can be processed to find significant
grouping, or cues. An example of a cue is an "S shape"
which can be generated by the combination of the bonnet,
windscreen and roof of a car. Such a cue is shown in
figure 6.

There are a number possible model labels that could give
rise to such an "S shape". By using perspective inversion
on all the labellings we can generate possible positions
for the car. Only three possible positions where found.

Figure 7. The model position after perspective inversion
with one of the possible labeling for an "S shape".

The correct one is shown in figure 7. Only three image
line and four model lines where used in the perspective
inversion.

Three Dimensional Grouping

We can now use the position we have determined to
enable grouping with other cues. This can be achieved by
projecting the model onto the image and predicting the
possible existence of other cues. For example, in the case
shown above we would expect to be able to detect the

windows of the car as two closed polygons5. This
grouping on the basis of three dimensional information,

or viewpoint consistency6, is easier than in the
knowledge free case. Using the now labeled window
feature we can re-invert the perspective projection to
find a position for the model which explains the
windows as well as the "S shape". The resulting
position is shown in figure 8. This process can be
repeated until no further matches are found or it is
decided that it is worth checking the hypothesis with an
iconic evaluation.

Figure 6. A cue in the form of an "S shape".

Figure 8. The model position using the Shape and off
side windows.

Use In Iconic Search

hi Iconic evaluation a position for the model is used to
predict lines on the image. These lines are then checked

in the raw image using an entirely predictive approach.7'8

This results in a score and position for each image line.
The position of the image line can then be used to re-
invert the perspective projection to generate a new
position for the model in a single iteration. The iconic
evaluation can then be made again using the new position
which can then be further refined. In the iconic
evaluation the image line can only be detected if it lies
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close to the predicted value and is reasonably parallel.
Perspective inversion can only be used in iconic search
for final refinement of the model position. This
approach was used on the position shown in figure 7, and
the result is shown in figure 9.

Figure 9. Model position after refinement
perspective inversion and iconic evaluation.

using

We can use the scores returned by the iconic evaluator to
weight the constraints in the perspective inversion so as
to maintain good matches and ignore poor, possibly
spurious, matches. This technique is currently under
further development.

Model Acquisition

One of the problems with using a geometric model
approach to image understanding is that one needs to
construct a geometrical model of the object. This means
taking many measurements of the object and laboriously
typing them into the computer. It is desirable for the
geometry of the object to be obtained from images
stored on the computer.

If we have multiple views of a static object, then by
equating points from two or more images, we can
reconstruct the three dimensional positions of model
points. This require that we know the relative position
of the cameras involved. If we include some already
know reference model then we can invert the perspective
projection using the method outlined above, see figure
10. This can be done for each image to determine the
position of the camera with respect to the reference
model. Armed with this information we can now
proceed with the acquisition of model points.

CONCLUSION

This method allows the inversion of perspective
independently of the starting translation and over a wide
range of rotations. The main advantages over the method
used by Lowe is that the constraints are expressed in
three dimensional space. This means that it is easy to
change the camera model and include constraints from
other images or knowledge sources.

Further work needs to be done on use of other
convergence conditions. For example convergence could
be tested on the size of the parameters relative to an
error matrix. Use of other parametrisations should also
be explored. For example the rotations could be
parametrised as the sines of angles.

Figure 10. Example of perspective inversion being used
to determine a camera position for model acquisition
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